Laptop Setup Instructions
Instructions for setting up your laptop can be found here: Laptop Setup Instructions
Pre-Workshop Tutorials
1) Cytoscape Preparation tutorials: Complete the introductory tutorial to Cytoscape: http://opentutorials.cgl.ucsf.edu/index.php/Portal:Cytoscape3
- Introduction to Cytoscape3 - User Interface
- Introduction to Cytoscape3 - Welcome Screen
- Filtering and Editing in Cytoscape 3
Pre-Workshop Readings
-
g:Profiler–a web-based toolset for functional profiling of gene lists from large-scale experiments
-
g:Profiler–a web server for functional interpretation of gene lists (2011 update)
Day 1
Welcome
*Faculty: Michelle Brazas*Day 1
Module 1: Introduction to Pathway and Network Analysis
*Faculty: Gary Bader*Lecture:
Pathways2015_Module1.pdf
Pathways2015_Module1.ppt
Pathways2015_Module1.mp4
Data Set:
Links:
* The Synergizer - identifier mapping
* Ensembl BioMart - (in menu bar, select the BioMart tab) eukaryotic gene query system
* ID Conversion Tool: gConvert - identifier mapping
* Gene Ontology - gene annotation
* Cytoscape - network visualization and analysis
Module 2: Finding over-represented pathways in gene lists
*Faculty: Quaid Morris*Lecture:
Pathways2015_Module2.pdf
Pathways2015_Module2.ppt
Pathways2015_Module2.mp4
Lab Practical: Gene-set enrichment analyses using GSEA and g:Profiler
*Faculty: Veronique Voisin*Pathways2015_Module2_LabSlides.pdf
Pathways2015_Module2_LabExercise.pdf
Data Set:
-
GSEA (exercise 1)
* MCF7_Expression_matrix.gct
* Human_GO_AllPathways.gmt
* MCF7_groups.cls -
g:Profiler (exercise 2)
Launching GSEA:
command line: java -Xmx2G -jar gsea2-2.2.0.jar
Additional Links:
* GSEA - help on format, installation, method,…
* g:Profiler
* DAVID - Enrichment Analysis for simple gene lists (jacknifed Fisher’s Exact Test)
* ConceptGen - Enrichment Analysis for simple gene lists (Fisher’s Exact Test)
* GSEA - Enrichment Analysis for ranked gene lists
* Other Enrichment Analysis tools for simple gene lists: Funspec, GoMiner
* List of 68 Enrichment Tools available as of 2008
Module 3: Cytoscape Intro, Demo and Enrichment Maps
*Faculty: Gary Bader*Lecture:
Pathways_2015_Module3.pdf
Pathways_2015_Module3.ppt
Pathways_2015_Module3.mp4
Lab Practical: Creating an enrichment map from GSEA and g:Profiler results
* http://baderlab.org/Software/EnrichmentMap
* link to install the latest available version of enrichment map: http://baderlab.org/Software/EnrichmentMap#Development_Versions
* Exercise 1: generate an enrichment map using GSEA results. Follow this protocol: http://baderlab.org/Software/EnrichmentMap/Tutorial#Step_2:_Generate_Enrichment_Map_with_GSEA_Output
* Exercise 2: generate an enrichment map using g:Profiler results. Follow this protocol: http://baderlab.org/Software/EnrichmentMap/GProfilerTutorial#Step_2:_Generate_Enrichment_Map_with_g:Profiler_Output
Data Sets:
-
Dataset Exercise 1 (download the folder, unzip it):
-
Dataset Exercise 2:
Result (back up files / cytoscape files):
* gprofiler_results_12hours.cys
Lab Practical optional: Use your own data set.
Programs Used:
* Open Tutorials for Cytoscape
Useful plugins:
* VistaClara - makes it easy to visualize gene expression data on networks
* Agilent Literature Search - extracts interactions from PubMed abstracts
* clusterMaker - provides multiple ways to cluster gene expression and networks
* BiNGO - provides over-representation analysis using Gene Ontology in Cytoscape - you can select genes in your network or provide a list of genes and see the enrichment results visually mapped to the Gene Ontology
* commandTool, coreCommands - used to control Cytoscape by a series of commands. E.g. automate the process: open network, layout network, save network as PDF. These plugins require Cytoscape 2.7
* jActiveModules - requires gene expression data over multiple samples (>3). Finds regions of a network where genes are active (e.g. differentially expressed) across multiple samples.
* Many more at http://chianti.ucsd.edu/cyto_web/plugins/index.php
Integrated Assignment - Day 1
*Faculty: Veronique Voisin*Pathways2015_part1_IntegratedAssignment.pdf
Pathways2015_part1_IntegratedAssignmentAnswers.pdf
Input Data sets:
- Expression.txt
- gem1033458993259_BE.txt
- gem1047581616441_EAC.txt
- GeneSet1_BE.txt
- GeneList2_EAC.txt
- hsapiens.NAME.gmt
Day 2
Module 4: Depth on Pathway and Network Analysis
*Faculty: Lincoln Stein*Lecture:
Pathways2015_Module4.pdf
Pathways2015_Module4.ppt
Pathways2015_Module4.mp4
Lab Practical:
*Faculty: Robin Haw*Pathways2015_Module4_LabSlides.pdf
Pathways2015_Module4_Lab.pdf
Pathways2015_Module4_LabAnswers.pdf
Data Sets:
Programs Used:
Reactome Website
Reactome User Guide
ReactomeFI User Guide
Papers:
Integrated genomic analyses of ovarian carcinoma
Clustering Algorithms: Newman Clustering and Hotnet
Reactome Website: NAR paper; Website guide
Nature Methods and Perspectives Paper
Links:
Pathway and Interaction databases
- GO
- KEGG
- Biocarta
- Reactome Curated human pathways
- NCI/PID
- Pathway Commons Aggregates pathways from multiple sources
- iRefWeb/iRefIndex Protein interactions
- >300 more
Module 5: Gene Function Prediction
*Faculty: Quaid Morris*Lecture:
Pathways2015_NYC_Module5.pdf
Pathways2015_NYC_Module5.ppt
Pathways2015_NYC_Module5.mp4
Lab Practical:
Pathways2015_Module5_LabSlides.pdf
Pathways2015_Module5_LabExercise.pdf
Data Sets for GeneMANIA exercises:
30_prostate_cancer_genes.txt
mixed_gene_list.txt
CYB11B_pearson_correlation_prostate.txt
Links:
Tools for gene function prediction systems (using functional associations)
* GeneMANIA (or beta version)
* STRING
* FunCoup – similar to STRING and GeneMANIA
* bioPIXIE – an early gene recommender system for yeast
* mouseNET – gene recommender for mouse
* FunctionalNet – composite functional networks for work, yeast, mouse and A thaliana
* FuncBase – a compiled database of gene functional predictions using supervised learning on Gene Ontology categories
Integrated Assignment - Day 2
*Faculty: Veronique Voisin*Pathways2015_part2_IntegratedAssignment.pdf
Pathways2015_part2_IntegratedAssignmentAnswers.pdf
Input Data sets:
- STAD_MutSig.txt (named GastricCancer_mutsig.txt in the instructions)
Day 3
Module 6: Gene Regulation Network Analysis
*Faculty: Michael Hoffman*Lecture:
Pathways2015_Module6.pdf
Pathways2015_Module6.ppt
Pathways2015_Module6.mp4
Lab Practical:
Pathways2015_Module6_Lab.pdf
Pathways2015_Module6_Lab_Addenda.pdf
Precomputed results:
- A549 c-Myc
The results provided during the workshop do not work outside the workshop. Archived results are in AppMEMECHIP_4.10.114306204728401779362043.tar.gz.
Links:
* ENCODE Project
* UCSC ENCODE file search
* Galaxy
* MEME Suite