
Canadian	 Bioinforma,cs	 Workshops	

www.bioinforma,cs.ca	

2 Module #: Title of Module

R	 Review	

Modified from Richard De Borja, Cindy Yao and Florence Cavalli

R review bioinformatics.ca

Objectives

• To review the basic commands in R
• To review the matrix, data frame and list

objects
• To learn more about how to visualize our data

To become more familiar with R!

R review bioinformatics.ca

Survey

• What is your experience in R?
– Never used at all
– Used for the first time to prepare the workshop
– Used in my work but very basic
– Using it rather regularly in my work

• Do you have experience in any other
language?
– Java, C, C++, …
– Perl, Python, Ruby, …

R review bioinformatics.ca

What is R?

R is a programming language and software
environment for statistical computing and
graphics

R allows for:
• Data handling and manipulation
• Statistical tests
• Graphics
• Specialized data analysis (i.e. microarray data,

Seq data)

R review bioinformatics.ca

An Overgrown Calculator

• Everything you can do on a calculator
you can do in R plus more!

> 2+5
[1] 7
> 30/10
[1] 3
> 20-5
[1] 15
> log10(20)
[1] 1.30103
> pi
[1] 3.141593
> exp(-2)
[1] 0.1353353
> sin(0.4)
[1] 0.3894183

R review bioinformatics.ca

Assignments
• The arrow <- is the assignment operator

> weight.a <- 10
> weight.a
[1] 10
> weight.b <- 30
> weight.b
[1] 30
> total.weight <- weight.a + weight.b
> total.weight
[1] 40

Tips:
• Avoid single letter names
• Separate words with a period or uppercase letters (i.e.

total.weight or totalWeight)

R review bioinformatics.ca

Code Documentation

• What is it for?
– Explain what you are going to do with the code
– Write messages for yourself

• Proper documentation is important!

Hi there! How are you?

This is a comment!

calculate the sum of 3 numbers
sum(c(2, 6, 8))

R review bioinformatics.ca

• In which directory are you working?
 getwd()

• How can you change the working directory?
 setwd()

• File list in working directory, and object list in
R:

 list.files(); ls()

Working Directory

> setwd("C:/myPATH")
> setwd("~/myPATH") # on Mac
> setwd("/Users/florence/myPATH") # on Mac

> getwd()
[1]
"/Users/florence/Canadian_Bioinfo_workshop/BiCG_workshop_2014/R_rev
iew_2014"

R review bioinformatics.ca

Finding help: within R

• Call help on a function
– help(sum)
– ?sum

• Read the documentation
– See next slide

• Quit the help
– q

• A more general search
– help.search(“plot”)
– ??plot

R review bioinformatics.ca

Name
of the function

Information
regarding the
function

Description of
the function

How to use it

R review bioinformatics.ca

Finding help: useR

• R website http://www.r-project.org
– Documentation
– Mailing-list R-help

• Useful links
– http://www.rseek.org
– http://www.r-bloggers.com
– http://biostar.stackexchange.com

• Colleagues
• Local groups

– GTA useR group

http://www.r-project.org/
http://www.rseek.org/
http://www.r-bloggers.com/
http://biostar.stackexchange.com/

R review bioinformatics.ca

Finding
help:
Google &
co

Many blogs, tutorial,
comments online, …

=> General web
search engines are
useful for that

R review bioinformatics.ca

Vectors

• Vectors are a collection of elements of
the same data type
– Numeric

– Character

– Logical

> logical.vector
[1] TRUE TRUE FALSE TRUE

> numeric.vector
[1] 1 2 3 4 5 6 2 1

> character.vector
[1] "Fred" "Barney" "Wilma" "Betty"

R review bioinformatics.ca

Creating Vectors
• The c() function can be used to combine

arguments and create vectors; str()
function can be used to check the
structure of the object> numeric.vector <- c(1,2,3,4,5,6,2,1)
> numeric.vector
[1] 1 2 3 4 5 6 2 1

> character.vector <- c("Fred", "Barney", "Wilma", "Betty")
> character.vector
[1] "Fred" "Barney" "Wilma" "Betty"

> logical.vector <- c(TRUE, TRUE, FALSE, TRUE)
> logical.vector
[1] TRUE TRUE FALSE TRUE

check the structure of the object:
> str(logical.vector)
 logi [1:4] TRUE TRUE FALSE TRUE

R review bioinformatics.ca

Vector Indexing

• Use the position in the vector to select
value of interest with the operator []

> character.vector
[1] "Fred" "Barney" "Wilma" "Betty"

> character.vector[2]
[1] "Barney”

> character.vector[2:3]
[1] "Barney" "Wilma"

> character.vector[c(2,4)]
[1] "Barney" "Betty"

R review bioinformatics.ca

Factors

• Factors store categorical data (i.e. gender)

> gender <- c(1,2,1,1,1,2)
> gender
[1] 1 2 1 1 1 2

> gender.factor <- as.factor(gender)
> gender.factor
[1] 1 2 1 1 1 2
Levels: 1 2

> levels(gender.factor) <- c("male", "female")
> gender.factor
[1] male female male male male female
Levels: male female

R review bioinformatics.ca

Factor Indexing

• Indexing a factor is the same as indexing a
vector

> gender.factor
[1] male female male male male female
Levels: male female

> gender.factor[2]
[1] female
Levels: male female

> gender.factor[2:4]
[1] female male male
Levels: male female

> gender.factor[c(1,4)]
[1] male male
Levels: male female

R review bioinformatics.ca

Matrix
• Matrices are tables of numbers

> ?matrix
##(…)
Usage:
matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
 dimnames = NULL)

> matrix.example <- matrix(1:12, nrow = 3, ncol=4, byrow = FALSE)
> matrix.example
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

> matrix.example <- matrix(1:12, nrow = 3, ncol=4, byrow = TRUE)
> matrix.example
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

R review bioinformatics.ca

Creating Matrices
• The rbind() and cbind() functions can be used to combine

vectors and create matrices. This is equivalent to the c()
function for vectors

> dataset.a <- c(1,22,3,4,5)
> dataset.b <- c(10,11,13,14,15)
> dataset.a
[1] 1 22 3 4 5
> dataset.b
[1] 10 11 13 14 15

> rbind.together <- rbind(dataset.a, dataset.b)
> rbind.together
 [,1] [,2] [,3] [,4] [,5]
dataset.a 1 22 3 4 5
dataset.b 10 11 13 14 15

> cbind.together <- cbind(dataset.a, dataset.b)

R review bioinformatics.ca

Creating Matrices
> dataset.a <- c(1,22,3,4,5)
> dataset.b <- c(10,11,13,14,15)
> dataset.a
[1] 1 22 3 4 5
> dataset.b
[1] 10 11 13 14 15

> rbind.together <- rbind(dataset.a, dataset.b)
> rbind.together
 [,1] [,2] [,3] [,4] [,5]
dataset.a 1 22 3 4 5
dataset.b 10 11 13 14 15

> cbind.together <- cbind(dataset.a, dataset.b)
> cbind.together
 dataset.a dataset.b
[1,] 1 10
[2,] 22 11
[3,] 3 13
[4,] 4 14
[5,] 5 15

R review bioinformatics.ca

Matrix Indexing
• Use the row and column positions to select

value of interest with the operator []
 i.e matrixObject[row_id,column_id]

> matrix.example
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

> matrix.example[2,4]
[1] 8
> matrix.example[2,]
[1] 5 6 7 8
> matrix.example[,4]
[1] 4 8 12

R review bioinformatics.ca

Matrix Indexing
• Re-name rows and columns and select values of interest

> colnames(matrix.example) <- c("Sample1","Sample2","Sample3","Sample4")
> rownames(matrix.example) <- paste("gene",1:3,sep="_")

> matrix.example
 Sample1 Sample2 Sample3 Sample4
gene_1 1 2 3 4
gene_2 5 6 7 8
gene_3 9 10 11 12

> matrix.example[,"Sample2"]
gene_1 gene_2 gene_3
 2 6 10
> matrix.example[1,"Sample2"]
[1] 2
> matrix.example["gene_1","Sample2"]
[1] 2

R review bioinformatics.ca

Data frames

• Data frames are similar to matrices but
each column can be a different data type

> people.summary <- data.frame(
+ age = c(30,29,25,25),
+ names = c("Fred", "Barney", "Wilma", "Betty"),
+ gender = c("m", "m", "f", "f")
+)

> people.summary
 age names gender
1 30 Fred m
2 29 Barney m
3 25 Wilma f
4 25 Betty f

R review bioinformatics.ca

Data frame Indexing

• Indexing a data frame can be done the
same way you index a matrix

 You can also use the $ to obtain a column

> people.summary[2,1]
[1] 29

> people.summary[2,]
 age names gender
2 29 Barney m

> people.summary[,1]
[1] 30 29 25 25

> people.summary$age
[1] 30 29 25 25

> people.summary
 age names gender
1 30 Fred m
2 29 Barney m
3 25 Wilma f
4 25 Betty f

R review bioinformatics.ca

Lists
• Lists are combinations of data which can

vary in data type and length
> together.list <- list(
+ vector.example = dataset.a,
+ matrix.example = matrix.example,
+ data.frame.example = people.summary
+)
> together.list
$vector.example
[1] 1 22 3 4 5

$matrix.example
 Sample1 Sample2 Sample3 Sample4
gene_1 1 2 3 4
gene_2 5 6 7 8
gene_3 9 10 11 12

$data.frame.example (to continue)

R review bioinformatics.ca

Lists
> together.list <- list(
+ vector.example = dataset.a,
+ matrix.example = matrix.example,
+ data.frame.example = people.summary
+)
> together.list
$vector.example
[1] 1 22 3 4 5

$matrix.example
 Sample1 Sample2 Sample3 Sample4
gene_1 1 2 3 4
gene_2 5 6 7 8
gene_3 9 10 11 12

$data.frame.example
 age names gender
1 30 Fred m
2 29 Barney m
3 25 Wilma f
4 25 Betty f

R review bioinformatics.ca

List Indexing

• You can index a list by using the $, [] , or [[]]

> together.list["matrix.example"]
$matrix.example
 Sample1 Sample2 Sample3 Sample4
gene_1 1 2 3 4
gene_2 5 6 7 8
gene_3 9 10 11 12

> together.list[["matrix.example"]]
 Sample1 Sample2 Sample3 Sample4
gene_1 1 2 3 4
gene_2 5 6 7 8
gene_3 9 10 11 12

> together.list[["matrix.example"]][,2]
gene_1 gene_2 gene_3
 2 6 10

> together.list$matrix.example
 Sample1 Sample2 Sample3 Sample4
gene_1 1 2 3 4
gene_2 5 6 7 8
gene_3 9 10 11 12

> together.list$matrix.example[,3]
gene_1 gene_2 gene_3
 3 7 11

• [] allows you to select
multiple elements

• $ and [[]] allows you to
select a single element

R review bioinformatics.ca

Functions

• Functions are a set of commands that work
together to perform a given task

• Arguments are parameters you provide to
the function for processing

 Most functions have reasonable default
values

> sum(c(1,2,3))
[1] 6
> log2(10)
[1] 3.321928
> sin(0.24)
[1] 0.2377026
> mean(c(1,2,3,4,5))
[1] 3

R review bioinformatics.ca

Some useful functions such as:
• Length of a vector: length()
• Number of rows or columns and dimension of a matrix/data

frame: nrow(), ncol(), dim()

> character.vector
[1] "Fred" "Barney" "Wilma" "Betty"
> length(character.vector)
[1] 4
> matrix.example
 Sample1 Sample2 Sample3 Sample4
gene_1 1 2 3 4
gene_2 5 6 7 8
gene_3 9 10 11 12
> nrow(matrix.example)
[1] 3
> ncol(matrix.example)
[1] 4
> dim(matrix.example)
[1] 3 4

R review bioinformatics.ca

Some useful functions such
as:
• Read a table for text file: read.table()
• Write a matrix/data frame in a text file:

write.table()

> ?read.table
read.table("myDataFile.txt", header=TRUE, sep="\t",
stringsAsFactors=FALSE)

> ?write.table

> write.table(people.summary, file="File_name_people_summary.txt",
quote=FALSE, sep = "\t",row.names = FALSE, col.names = TRUE)

logical: should character vectors be converted
to factors?

R review bioinformatics.ca

Let’s try! (I)

• Use the assignment operator to store
three values of your choice

• Calculate and store the sum of the values
from above

R review bioinformatics.ca

Solutions

• Use the assignment operator to store
three values on your choice

• Calculate and store the sum of the values
from above

> value.a <- 10
> value.b <- 3
> value.c <- 12

> sum.values <- value.a + value.b + value.c

R review bioinformatics.ca

Let’s try! (II)

We will use the cars dataset (included by default in R)
• What data type is the cars dataset? and its dimensions?
• Access to the speed values
• Access and store only the cars data with speeds greater than

15. How many cars does this affect?
• Reformat the cars data into a list
• Access only the cars data with speeds greater than 15 from

the list you just created. How many cars does this affect? Did
you get the same results as above?

• What does stringsAsFactors in the data.frame function do?

R review bioinformatics.ca

Solutions
• What data type is the cars dataset? and its dimensions?

• Access to the speed values

> class(cars)
[1] "data.frame"
> dim(cars)
[1] 50 2
or
> str(cars)
'data.frame': 50 obs. of 2 variables:
 $ speed: num 4 4 7 7 8 9 10 10 10 11 ...
 $ dist : num 2 10 4 22 16 10 18 26 34 17 …

> cars$speed
 [1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
[26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25

To look at the object
> head(cars)
 speed dist
1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10

R review bioinformatics.ca

Solutions
• Access and store only the cars data with

speeds greater than 15
 How many cars does this affect?

• Reformat the cars data into a list

> cars.greater.speed <- cars[cars$speed > 15,]
> nrow(cars.greater.speed)
[1] 24

> cars.as.list <- list(SPEED = cars$speed, DISTANCE = cars$dist)
> cars.as.list
$SPEED
 [1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
[26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25

$DISTANCE
 [1] 2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 26 34 34 46
[20] 26 36 60 80 20 26 54 32 40 32 40 50 42 56 76 84 36 46 68
[39] 32 48 52 56 64 66 54 70 92 93 120 85

> names(cars.as.list)
[1] "SPEED" "DISTANCE"

R review bioinformatics.ca

Solutions

• Access only the cars data with speeds greater
than 15 from the list you just created

 How many cars does this affect?
 Did you get the same results as above?

> cars.as.list.greater.speed <- cars.as.list$SPEED[cars.as.list$SPEED > 15]

> cars.as.list.greater.speed
 [1] 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25

> length(cars.as.list.greater.speed)
[1] 24

R review bioinformatics.ca

Solutions

• What does stringsAsFactors in the
data.frame function do?

> ?data.frame
##(…)
logical: should character vectors be converted to factors?
The ‘factory-fresh’ default is TRUE, but this can be
changed by setting options(stringsAsFactors = FALSE).

http://127.0.0.1:14248/library/base/help/options

R review bioinformatics.ca

Exploratory analysis and
plots

• A few tips:
– Do not show too much information on a plot
– Think about what message you want to give thanks

to the plot
– Avoid 3D graphics
– Stay away from Excel (not a statistics package)

R review bioinformatics.ca

Let’s have a look: simple plot

• Function plot()

• Make it nicer
> plot(x=cars$speed, y=cars$dist,
 xlab = "Speed",
 ylab = "Distance",
 cex.lab = 1.5,
 main = "A nice scatter plot",
 pch = 16,
 bty = "n",
 col = "dark blue",
 las = 1)

> plot(x=cars$speed,
 y=cars$dist)

R review bioinformatics.ca

Let’s have a look: histogram

• Function hist()

• Make it nicer

> hist(cars$speed)

> hist(cars$speed,
 xlab = "Speed",
 ylab = "Number of cars",
 cex.lab = 1.5,
 main = "A nice histogram",
 col = "cyan",
 breaks = 10,
 las = 1)

A nice histogram

Speed

N
um

be
r o

f c
ar

s

5 10 15 20 25

0

2

4

6

8

Histogram of cars$speed

cars$speed

Fr
eq

ue
nc

y

0 5 10 15 20 25

0
5

10
15

R review bioinformatics.ca

Let’s have a look: boxplot

• Function boxplot()

IQR:
Inter Quantile Range
25%-75% quantile

25% quantile

75% quantile

median

outlier

1.5*IQR

IQR

> boxplot(cars)

R review bioinformatics.ca

Other useful functions related
to figures

• Function par()
– Allow to set many graphical parameters such as

mfrow, bg, col,…
– See ?par

• Function pdf() then dev.off()
– To save your plot as a .pdf figure

?pdf
##(…)
Description:

 ‘pdf’ starts the graphics device driver for producing PDF
 graphics.

R review bioinformatics.ca

• R deals with missing values in a object using
the NA value

• We can detect NA values with the is.na()
function

Missing values

> val <- c(1,3,5,NA,3,6)
> val
[1] 1 3 5 NA 3 6

> is.na(val)
[1] FALSE FALSE FALSE TRUE FALSE FALSE

> which(is.na(val))
[1] 4

R review bioinformatics.ca

Let’s try! (IV)

• Compute the sum of val removing missing
values

• I want the average of val, and I do mean(val)
 I am not happy with the result. What can I
do?

val <- c(1,3,5,NA,3,6)

R review bioinformatics.ca

Solutions

• Compute the sum of x removing missing
values

• I want the average of x, and I do mean(x)
 I am not happy with the result
 What can I do?

> val <- c(1,3,5,NA,3,6)
> sum(val, na.rm = TRUE)
[1] 18

> mean(val)
[1] NA
> mean(val, na.rm = TRUE)
[1] 3.6

R review bioinformatics.ca

How to save and reload your data?
• Use the functions save() or save.image() and load()

> ?save
##(…)
Description:
 ‘save’ writes an external representation of R objects to the
 specified file. The objects can be read back from the file at a
 later date by using the function ‘load’ (or ‘data’ in some cases).

 ‘save.image()’ is just a short-cut for ‘save my current
 workspace’, i.e., ‘save(list = ls(all = TRUE), file = ".RData")’.
 It is also what happens with ‘q("yes")’.

> save(cars.as.list, file="my_cars_as_list.RData")
> load(file="my_cars_as_list.RData") #if the file is present in the working
directory, if not, indicate the path of the .RData file

> save(cars.as.list, numeric.vector, rbind.together,
file="my_Objects_Rreview_May2014.RData")
> load(file="my_Objects_Rreview_May2014.RData")

To save all the objects in the R session
> save.image(file="Rreview_2014.RData")
after closing you R session for example, load the data with:
> load(file="Rreview_2014.RData")

R review bioinformatics.ca

• http://cran.r-project.org/
• "Currently, the CRAN package repository

features 5563 available packages”
• To install a package: install.packages()

• How to set your CRAN?

> chooseCRANmirror()

A few words about packages

install.packages("PackageName")
> install.packages("heatmap.plus")

http://cran.r-project.org/
http://cran.r-project.org/

R review bioinformatics.ca

A few words on Bioconductor

• Bioconductor provides tools for the analysis
and comprehension of high-throughput
genomic data.

• Site: http://bioconductor.org/
• Contains method, dataset and annotation

packages
• May 2014: 824 software packages !
• To install a Bioconductor package:

> source("http://bioconductor.org/biocLite.R")
biocLite("PackageName")
> biocLite("DESeq2")
> library("DESeq2")

R review bioinformatics.ca

Any questions?

R review bioinformatics.ca

Try and test by yourself!

R review bioinformatics.ca

Extra slides

R review bioinformatics.ca

Let’s try plotting! (III)

• Do a scatter plot with connected dots
• Make your customized version of the boxplot
• How can you change the 1.5*IQR parameter?
• Print the scatter plot and the boxplot on top of

each other and save the figure in a pdf file

R review bioinformatics.ca

Solutions

• Do a scatter plot with connected dots

> plot(cars$speed, cars$dist,
 xlab = "Speed",
 ylab = "Distance",
 cex.lab = 1.5,
 main = "A nice scatter plot",
 pch = 16,
 bty = "n",
 col = "dark blue",
 type = "b",
 las = 1)

5 10 15 20 25

0

20

40

60

80

100

120

A nice scatter plot

Speed

D
is

ta
nc

e

R review bioinformatics.ca

Solutions

• Make your customized version of the boxplot

> boxplot(cars,
 width = c(3,1),
 col = "red",
 border = "dark blue",
 names = c("Speed", "Distance"),
 main = "My boxplot",
 notch = TRUE,
 horizontal = TRUE)

S
pe

ed
D

is
ta

nc
e

0 20 40 60 80 100 120

My boxplot

R review bioinformatics.ca

• How can you change the 1.5*IQR parameter?

Solutions

> boxplot(cars,
width = c(3,1),
col = "red",
border = "dark blue",
names = c("Speed", "Distance"),
main = "My boxplot",
range = 1,
notch = TRUE,
horizontal = TRUE)

range, default
=1.5

S
pe

ed
D

is
ta

nc
e

0 20 40 60 80 100 120

My boxplot

R review bioinformatics.ca

• Print the scatter plot and the boxplot on top of
each other and save the figure in a pdf file

Solutions

> pdf("myfigure.pdf", height=18, width=8)
> par(mfrow=c(2,1))

> plot(cars$speed, cars$dist,
 xlab = "Speed", ylab = "Distance",
 cex.lab = 1.5,
 main = "A nice scatter plot",
 pch = 16,
 bty = "n”,
 col = "dark blue”,
 type = "b”,
 las = 1)

> boxplot(cars,
 width = c(3,1),
 col = "red",

border = "dark blue",
names = c("Speed", "Distance"),
main = "My boxplot",
notch = TRUE,
horizontal = TRUE)

> dev.off()

5 10 15 20 25

0

20

40

60

80

100

120

A nice scatter plot

Speed

D
is

ta
nc

e

S
pe

ed
D

is
ta

nc
e

0 20 40 60 80 100 120

My boxplot

R review bioinformatics.ca

Statement control: If

• If/else

• If/else if/else

x <- 2
if (x>0) {
 cat("Positive value:",x,"\n")
} else if (x<0) {
 cat("Negative value:",x,"\n")
}

x <- -3
if (x>0) {
 cat("Positive value:",x,"\n")
} else if (x==0) {
 cat(“Zero:”,x,"\n”)
} else {
 cat("Negative value:",x,"\n")
}

"\n" is to go to the next linePositive value: 2

Negative value: -3

R review bioinformatics.ca

Loop, loop, loop: For

• Indexes

• Vectors

for (i in 1:5) {
 cat(i)
}

values <- c(2,1,3,6,5)
for (value in values) {
cat(value)
 print(value)
}

12345>

[1] 2
[1] 1
[1] 3
[1] 6
[1] 5

R review bioinformatics.ca

• Easy syntax…

• And easy mistakes…

x <- 4
while (x>0) {
 cat(“positive value:”,x,”\n”)
 x <- x+1
}

Loop, loop, loop: While

Oops.. we have a problem here…
Infinite loop

Make sure something
changes in each loop

Make sure that the end
criteria will happen

x <- 4
while (x>0) {
 cat(“positive value:”,x,”\n”)
 x <- x-1
}

positive value: 4
positive value: 3
positive value: 2
positive value: 1

R review bioinformatics.ca

Let’s try! (V)

• Print all numbers from 1 to 10
• Print all even numbers from 1 to 10
• Print the speed of the first 8 cars using while
• Print the first 8 cars that have a speed more

than 9
• How many cars have a speed greater than

10?
 What is their mean distance?

R review bioinformatics.ca

One way to do it with what
we learned

• Print all numbers from 1 to 10

• Print all even numbers from 1 to 10

create “sample” to browse
sample <- 1:10
for (n in sample) {

print each number in “sample”
print (n)
}

create the sample to browse
sample <- 1:10
for (n in sample) {

test the rest of the division by 2 (see if even)
if (n %% 2 == 0) {

print (n)
}

no need for a else here (and it is not required)
}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10

[1] 2
[1] 4
[1] 6
[1] 8
[1] 10

R review bioinformatics.ca

• Print the speed of the first 8 cars using while

One way to do it with what
we learned

we initialize the index to track how many cars were printed
1 to start at the first car
index <- 1
we continue until the index is 8
while (index <= 8) {

to access the speed of the car
speed <- cars[index, "speed”]
we print with \n to go to the next line
cat("Car #", index, "speed:", speed, "\n”)
every iteration we go to the next car
index <- index + 1
}

Car # 1 speed: 4
Car # 2 speed: 4
Car # 3 speed: 7
Car # 4 speed: 7
Car # 5 speed: 8
Car # 6 speed: 9
Car # 7 speed: 10
Car # 8 speed: 10

R review bioinformatics.ca

• Print the first 8 cars that have a speed more than 9

One way to do it with what
we learned

we initialize the variables so that they can be used in the loop
0 on the counter to add up
counter <- 0
each time we find an appropriate car, 1 on the index to start at the first car
index <- 1
while (counter < 8) {

to access the speed of the car
speed <- cars[index, "speed"]
if it is more than 9
if (speed > 9) {

we print the car found, with \n to go to the next line
cat("Car #", index, "speed:", speed, "\n")
and track that we have printed one more car
counter <- counter + 1
}

every time we go to the next car
index <- index + 1
}

Car # 7 speed: 10
Car # 8 speed: 10
Car # 9 speed: 10
Car # 10 speed: 11
Car # 11 speed: 11
Car # 12 speed: 12
Car # 13 speed: 12
Car # 14 speed: 12

R review bioinformatics.ca

• How many cars have a speed greater than 10?
 What is their mean distance?

One way to do it with what
we learned

we put 0 to add up the values we have while browsing the cars
count <- 0
distance <- 0
we browse all cars by their index
for (i in 1:nrow(cars)) {

test if the speed of the car exceeds 10
if (cars[i, "speed"] > 10) {

here we add it to the group of cars considered
count <- count + 1
we add its distance to compute the mean afterwards
distance <- distance + cars[i, "dist"]
}

}
we compute the distance with the global sum of all distances and the number
of # cars used to get that global sum
distanceMean <- distance / count
print the results, “\n” is used to go to the next line
cat(count, "cars, mean distance", distanceMean, "\n")

41 cars, mean distance 48.95122

R review bioinformatics.ca

Creating functions

To create a function you need to:
• State you want to create a function with

function()
• Include required arguments in brackets ()
• Contain the commands in the curly brackets {}
• State your return object, using return()

> function.example <- function(vector.of.values){
+ sum.exponent.value <- sum(vector.of.values)^2
+ return(sum.exponent.value)
+ }

> dataset.a
[1] 1 22 3 4 5
> function.example(dataset.a)
[1] 1225

R review bioinformatics.ca

Creating functions
continued…

• You can add in default values to
arguments

> function.example <- function(vector.of.values, exponent.value = 2){
+ sum.exponent.value <- sum(vector.of.values)^exponent.value
+ return(sum.exponent.value)
+ }

> dataset.a
[1] 1 22 3 4 5
> function.example(dataset.a)
[1] 1225
> function.example(dataset.a, exponent.value = 10)
[1] 2.758547e+15

R review bioinformatics.ca

Let’s try! (VI)

• Create a function that takes in a vector
and returns its mean

• Create a function that takes in a numeric
vector and minimum cutoff value. Return
the mean, median and variance for the
numbers in the vector that are greater
than the minimum cutoff. Use all positive
values if the user does not input a
minimum cutoff value

R review bioinformatics.ca

Possible Solutions

• Create a function that takes in a vector
and returns its mean

> calculate.mean <- function(x){
+ to.return <- mean(x)
+ return(to.return)
+ }

> dataset.a
[1] 1 22 3 4 5
> calculate.mean(dataset.a)
[1] 7

R review bioinformatics.ca

Possible Solutions
• Create a function that takes in a numeric vector

and minimum cutoff value. Return the mean,
median and variance for the numbers in the
vector that are greater than the minimum cutoff.
Use all positive values if the user does not input
a minimum cutoff value> summary.selection <- function(vector.of.values, cutoff.value = 0){

+ selected <- vector.of.values[vector.of.values > cutoff.value]
+ mean.value <- mean(selected)
+ median.value <- median(selected)
+ var.value <- var(selected)
+ to.return <- list(mean = mean.value, median = median.value, var =
var.value)
+ return(to.return)
+ }

> summary.selection(dataset.a)
$mean
[1] 7
$median
[1] 4
$var
[1] 72.5

	Slide 1
	Slide 2
	Slide 3
	Objectives
	Survey
	What is R?
	An Overgrown Calculator
	Assignments
	Code Documentation
	Working Directory
	Finding help: within R
	Slide 12
	Finding help: useR
	Finding help: Google & co
	Vectors
	Creating Vectors
	Vector Indexing
	Factors
	Factor Indexing
	Matrix
	Creating Matrices
	Creating Matrices
	Matrix Indexing
	Matrix Indexing
	Data frames
	Data frame Indexing
	Lists
	Lists
	List Indexing
	Functions
	Some useful functions such as:
	Let’s try! (I)
	Solutions
	Let’s try! (II)
	Solutions
	Solutions
	Solutions
	Solutions
	Exploratory analysis and plots
	Let’s have a look: simple plot
	Let’s have a look: histogram
	Let’s have a look: boxplot
	Other useful functions related to figures
	Missing values
	Let’s try! (IV)
	Solutions
	How to save and reload your data?
	A few words about packages
	A few words on Bioconductor
	Slide 51
	Slide 52
	Slide 53
	Let’s try plotting! (III)
	Solutions
	Solutions
	Solutions
	Solutions
	Statement control: If
	Loop, loop, loop: For
	Loop, loop, loop: While
	Let’s try! (V)
	One way to do it with what we learned
	One way to do it with what we learned
	One way to do it with what we learned
	One way to do it with what we learned
	Creating functions
	Creating functions continued…
	Let’s try! (VI)
	Possible Solutions
	Possible Solutions

